MINERALS ON STAMPS

Fred Haynes November 14, 2013

A quarterly bulletin featuring articles, reports and checklists covering all phases of gems, minerals and jewelry on stamps.

UNIT OFFICERS

President Alan Dean

108 Newton Square Pointe Claire, Dorval, QC H9R 1H8 Canada

E-mail: norma.al@sympatico.ca

Vice-President François Brisse

289 Oakdale Crescent Beaconsfield, OC

H9W 1X3

Canada

E-mail: fsbrisse@sympatico.ca

Secretary Treasurer Gilberte Proteau

138 Lafontaine

Beloeil, QC

J3G 2G7

Canada E-mail:

gilberte.ferland@sympatico.ca

New Issues

Ian Hunter

77 Edgevalley Way N.W. Calgary, AB T3A 4X7

Canada

E-mail: ighunter@shaw.ca

Editor

François Brisse

Autumn 2011

No. 111

CONTENTS

Word from the President	2
Pierre Berthier	3
François Brisse & Wikipedia	
The Sala Silver Mine - The Treasure Chest of Sweden	5
Josef Charrach	
International Year of Crystallography 2013	7
François Brisse & IUCr	
History of the Rare Earths on Postage Stamps	11
Fathi Habashi	
Rare-earth Minerals and the Naming of the Rare-earth Elements	13
François Brisse	
New Issues	16
Ian Hunter	

Members receive an Excel checklist:

2572	USA	1538	1974 Jun 13	Silicified wood	10c	MS
2573	USA	1539	1974 Jun 13	Tourmaline	10c	MS
2574	USA	1540	1974 Jun 13	Amethyst	10c	MS
2575	USA	1541	1974 Jun 13	Rhodochrosite	10c	MS
2576	USA	2700	1992 Sep 17	Azurite, (copper)	29c	MS
2577	USA	2701	1992 Sep 17	Copper	29c	MS
2578	USA	2702	1992 Sep 17	Variscite	29c	MS
2579	USA	2703	1992 Sep 17	Wulfenite	29c	MS
2580	USA	3235	1998 Aug 21	Klondike Gold Rush	32c	MN
2581	USA	3316	1999 Jun 18	California Gold Rush	33c	MN

The GMJSU checklist includes over 2700 entries. Just over 1500 are identifed and MS (mineral specimens) or GS (gemstones). The rest include mining stamps, some geology, and a few fossils, jewelry/artifacts, and other related topics. This list seems fairly complete for minerals, but is not inclusive for other items.

MINERAL HERITAGE FOUR STAMP BLOCK

(Carrying all four stamps in this issue.)

The four-stamp block commemorating America's Mineral Heritage is a design first in U.S. stamps whereby a diamond shape is achieved by following the Postal Service's recommendation that this block of stamps be rotated 45 degrees so that the denominations appear horizontally. Romanticists will remember that placing stamps upside down is supposed to signify love. Now, perhaps, a new dimension in stamp placement has been added by the diamond motif—a tribute to the importance of natural resources and their conservation in our lives.

The set of four ten-cent stamps on this Cover commemorates this heritage and features designs of minerals selected not for their scarcity or monetary value, but for two other reasons. First, all four of them—Amethyst, Tourmaline, Rhodochrosite and Petrified Wood—are universally recognized in lapidary (the art of cutting gems) as being typically American.

Second, they are treasured by collectors because of their sesthetic qualities and particularly admired for their colors, which are reproduced faithfully on the stamps.

Amethyst, deep lavender in color, is cut and polished as a

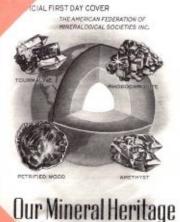
semi-precious gem. Tourmaline, rose red, has optical and electrical instrument application. Coral-rose colored rhodo-chrosite contains manganese used in steelmaking and the chemical industry. Rainbow-hued petrified wood, predominately red and yellow, is valuable to geologists in studying the structure of trees as they existed in prehistoric times.

These minerals are found in nature in four scattered parts of our nation, ranging from the town of Due West, South Carolina (amethyst) to Arizona's Petrified Forest (petrified wood) to Colorado (rhodochrosite) and San Diego County, California (tourmaline).

Actual samples from the gems and minerals collection of the Smithsonian Institution were used as models by expert engravers of the Bureau of Engraving and Printing in capturing the colorful beauty of these four distinctly American minerals on the stamps, designed by Leonard F. Buckley.

This unique set of four stamps was first placed on sale at the 1974 National Gem and Mineral Show in Lincoln, Nebruska, with first day ceremonies at the State Fair grounds.

UNITED STATES UNITED STATES 35069


Petrified Wood – Arizona Petrified Forest

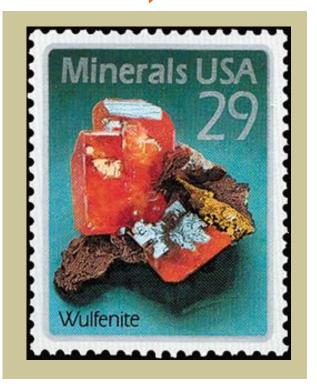
Tourmaline- San Diego County, CA
Rhodochrosite – Sweet Home
Mine, Colorado

Amethyst – Due West, SC

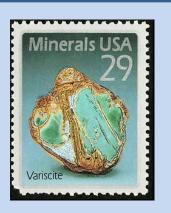
All are Smithsonian samples designed by Leonard Buckley. First Day cover issued in Lincoln, NB at the 1974 National Gem and Mineral Show.

Scott # 1538-1541, June 13, 1974

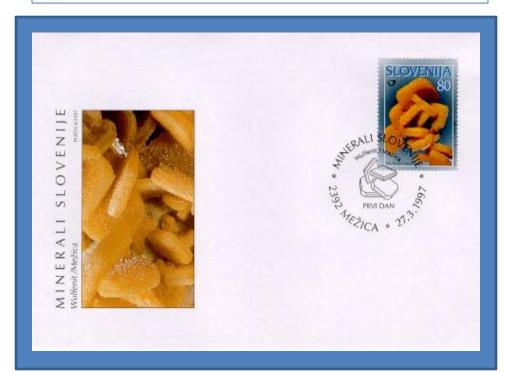
SERIES


Red Cloud Mine

Four mineral stamps designed by Leonard Buckley from specimens in the Baird Auditorium of the Smithsonian Museum of Natural History. Printed by offset/intaglio process and issued in panes of 40. Issued Sept. 17, 1992 for domestic postage.



THE ACTUAL SPECIMEN

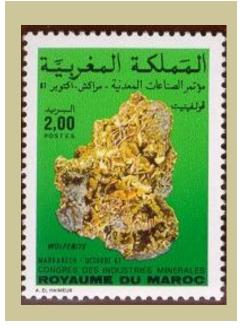

Americans mined wulfenite and silver at the Red Cloud Mine in Arizona from the 1860's until 1890, and then sporadically until 1941. Red Cloud wulfenites are among the best in the world because of their deep orange-red colors and their unusual size and perfection.

CHAD	788B j	1998 Nov 12	Wulfenite	500f
CHAD	839	2004 Jan 15	Wulfenite	150f
MOROCCO	649	1987 Oct	Wulfenite	2d
NAMIBIA	687	1991 Jan 2	Wulfenite	1.50r
SLOVENIA	286	1997 Mar 27	Wulfenite	80t
SOUTH-WEST AFRICA	637	1989 Nov 16	Wulfenite	45c
UNITED STATES	2703	1992 Sep 17	Wulfenite	29c
YUGOSLAVIA	1501	1980 Sep 10	Wulfenite	13d
CHAD	934c	2001 Dec 27	Wulfenite (also imperf.)	500f
MALAGASY	1350c	1998 Feb 25	Wulfenite (also imperf)	7500fr
COMORO ISLANDS	933	1998	Wulfenite s/s	1125fr
GUINEA BISSAU		2008	Wulfenite, stibnite, acanthite, metatorgernite	3000

Mezica in Slovenia – World-Famous Wulfenite Locality by Dalibor Valebil – Nat'l Mus., Prague, Czech Republic

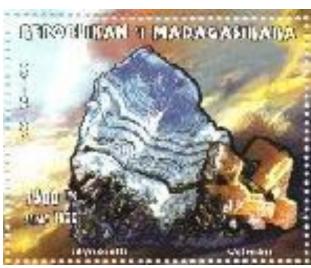
At the lead and zinc deposit between Mezica and Crna in Slovenia lead was mined from the 17th century until 1994. Since the 19th century zinc was processed in addition to lead. As a secondary ore, wulfenite was mined for its molybedenum.

Extracted from Mineral Magazine 2005, v. 13 #2 pg. 105-112



FDC of Scott #286, March 27, 1997

Yugoslavia Scott # 1501, part of set of 4, issued Sept. 10, 1980



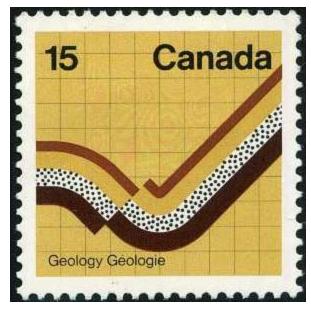
BOLTWOODITE

Stamp Error

BOLTWOODITE

Scott #631, issued 11/16/89

K(H₃O)(UO₂)(SiO₄) Incorrect formula


Scott #631A, issued 10/25/90

Scott #685, issued 1/2/92

Corrected formula $K_2(UO_2)_2(SiO_3)_2(OH)_2 \cdot 5H_2O$

CANADA

Scott #582, Aug. 2, 1972

From a set of 4 commemorating national science conferences, this stamp depicts a normal fault in layered and folder rock, while commemorating the 24th International Geological Congress, held in Montreal

Scott #1436-1440, Sept. 21, 1992

CANADA

Scott #1436-1440, Sept. 21, 1992

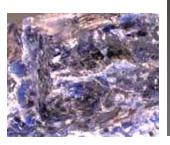
Native Copper

Galena

Native Gold

Sodalite (polished)

Garnet (grossular)



Flamboro Quarry, Wentworth, Ontario

Gold, Klondyke District, Yukon

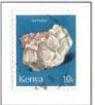
Princess Mine, Hastings Co., Ontario

Jeffrey Mine, Asbestos, Quebec

KENYA

Kenya – Scott # 98-112 December, 1977

Tourmaline (var. Elbaite)



KENYA

Gypsum

Trona

Kyanite

Amazonite

Galena

Petrified Wood

Fluorite

Agate

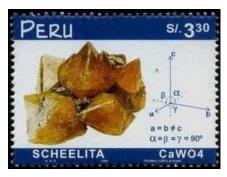
Tourmaline

Beryl (Aquamarine)

Rhodolite Garnet

Corundum (Sapphire)

Corundum (Ruby)



Grossular Garnet

PERU

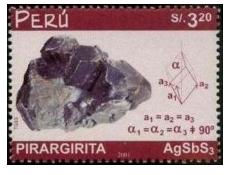
Galena - PbS

Scheelite - CaWO₄

Fossil ???

July 1999 Scott 1230-32

July 2002


Scott 1339-41

Chalcopyrite – CuFeS₂

Sphalerite – ZnS

Pyrargyrite – AgSbS₃

Orpiment – As₂S3

Rhodochrosite – MnCO₃

Huebnerite – MnWO₄

Jan. 2004 Scott 1372-73

April 2006 Scott 1514

SPAIN

Scott #2763a-d Feb., 1994

Cinnabar – HgS

Sphalerite – ZnS

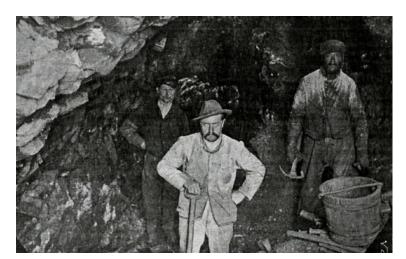

Pyrite - FeS2 Galena - PbS

The center labels with the 4 stamps depicts the main floor of the Museo Geominero (Geomineral Museum) in Madrid. The museum is the home for over 8000 mineral specimens in 250 glass cabinets.

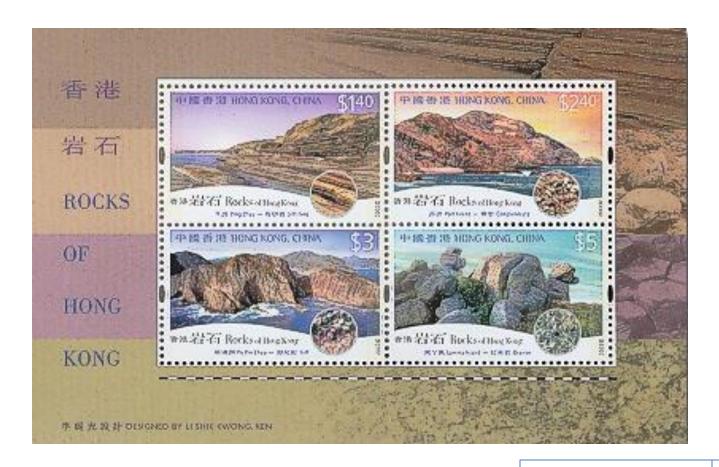
Stand (SLAND)

Scott #862, 1998 Stilbite from Teigarhorni (B)

ICELAND



Scott #885, 1999
Calcite from Helgustodum (A)


Some interesting notes about Teigarhorni

- Zeolites from here considered world's best
- Now a Historic Preservation Site
- Highest recorded temperature in Iceland was in Teigarhorni on June 22, 1939

30.5°C, 86.9°F

Miner's in Helgustodum silver mine, 19th century

HONG KONG

Scott #994-997 Sept., 2002

The rock outcrop portions of these stamps were applied with a thermographic process, producing a shiny raised surface Siltstone
(Ping Chau)

Conglomerate
(Port Island)

Tuff
(Po Pin Chau)

Granite
(Lamma Island)

FLUORITE

Germany #1106, 1969

Thailand #1348, 1990

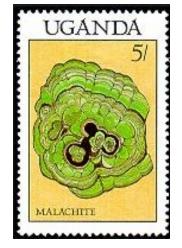
Fluorite from Penfield Quarry

Fluorite on dolomite, Walworth Quarry

France, #2020, 1986

South-West Africa, #627, 1989

Algeria #713, 1983

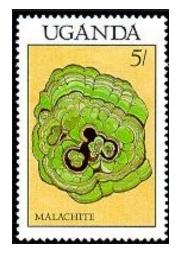

MALACHITE

Zaire #1102, 1983 Dem. Rep. of Congo

 $Cu_2CO_3(OH)_2$

Uganda #649, 1988

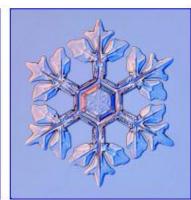
Morocco, #648, 1987



MALACHITE

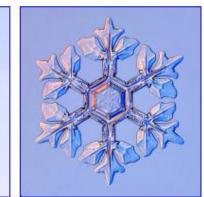
Malachite and Gems of Africa, Rochester, NY

Zaire #1102, 1983 Dem. Rep. of Congo


Uganda #649, 1988

Morocco, #648, 1987

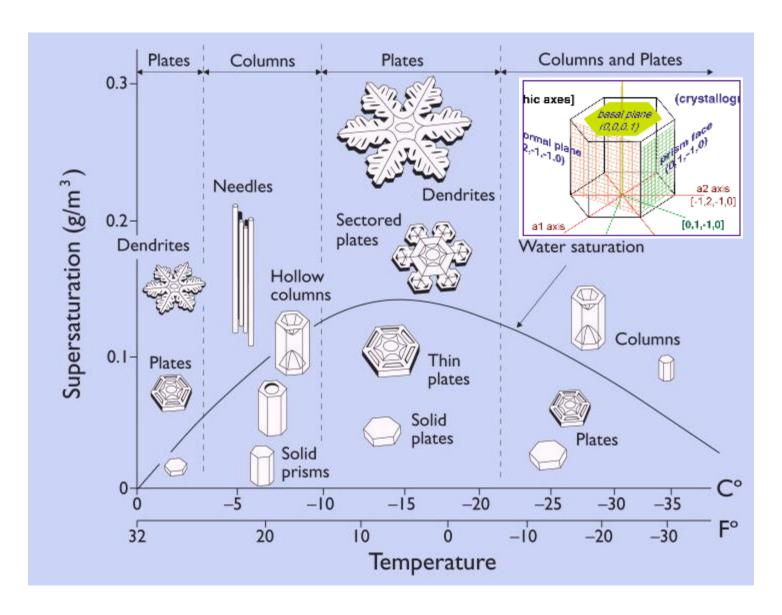
October 6, 2006 in New York, NY


Original photos

- Physicist Kenneth Libbrecht of Pasadena, CA photographed snowflakes inside a temperature regulated enclosure with a digital camera attached to a high resolution microscope.
- The crystals appear blue because Libbrecht illuminated them with a bluish white light. The patterns are stellar dendrites, which form branking arms and hexagaonally sectored plates.
- Richard Sheath cut the flakes out digitally in designing the stamps for the post office.
- The upper right snowflake was memorialized on film in Fairbanks, Alaska, the lower left in Houghton, Midhigan and the other two in northern Ontario.

October 6, 2006 in New York, NY

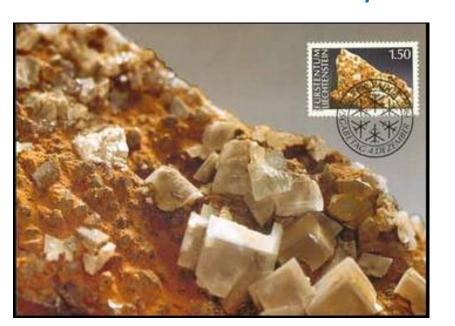
Original photos


October 1, 2013, presorted postage, sold in rolls of 10,000 coiled stamps

Libbrecht went to Kiruna in northern Sweden to photograph Swedish snowflakes for a series of five 12 kroner stamps issued on November 18, 2010

Not to be outdone, Austria issued stamps depicting 20 of Libbrecht's creations.

Snowflakes form when water vapor condenses directly into ice.

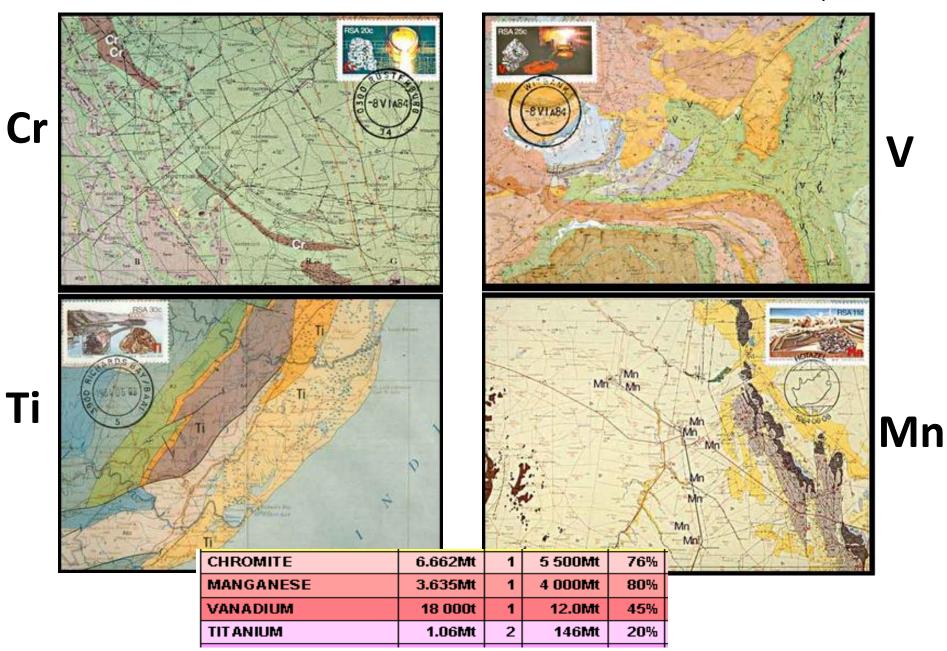

Maxicards - **Liechenstein**

Scott #921 (Dec. 4, 1989)

Scepter quartz

Scott #922 (Dec. 4, 1989)

Pyrite nodule



Scott #923 (Dec. 4, 1989)

Calcite rhombs

Maxicards - South Africa

Scott #630-633, 1984

Production through 2000 Rank Reserves % in SA

Unusual Minerals on Stamps

Columbite-Tantalite (Fe,Mn)Nb₂O₆ Scott #599 (1988)

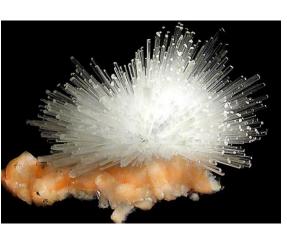
Wolframite (Fe,Mn)WO₄ Scott #1106 (1971)

Wavellite
Al₃(PO₄)₂(OH)₃.5H₂O
not recgonized

Collected by Fred Haynes National Limestone Quarry, Moutn Pleasant Mills, PA

Ethyrite Co₃(AsO₄)₂.8H₂O Scott #1105 (1969)

Unusual Minerals on Stamps


Cordierite (Fe,Mg)₂Al₃Si₅AlO₁₈ Scott #194 (1994)

 $CaAl_2Si_3O_{10}.3H_2O$ Scott #863 (1998)

Crocoite PbCrO₄ not recognized

Dioptase CuSiO₃.H₂O Scott #679 (1991)

GOLD

